3.2.67 \(\int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx\) [167]

3.2.67.1 Optimal result
3.2.67.2 Mathematica [A] (verified)
3.2.67.3 Rubi [A] (warning: unable to verify)
3.2.67.4 Maple [A] (verified)
3.2.67.5 Fricas [B] (verification not implemented)
3.2.67.6 Sympy [F(-1)]
3.2.67.7 Maxima [A] (verification not implemented)
3.2.67.8 Giac [B] (verification not implemented)
3.2.67.9 Mupad [B] (verification not implemented)

3.2.67.1 Optimal result

Integrand size = 19, antiderivative size = 140 \[ \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx=-\frac {5 a \text {arctanh}(\cos (c+d x))}{16 d}-\frac {3 b \cot ^2(c+d x)}{2 d}-\frac {3 b \cot ^4(c+d x)}{4 d}-\frac {b \cot ^6(c+d x)}{6 d}-\frac {5 a \cot (c+d x) \csc (c+d x)}{16 d}-\frac {5 a \cot (c+d x) \csc ^3(c+d x)}{24 d}-\frac {a \cot (c+d x) \csc ^5(c+d x)}{6 d}+\frac {b \log (\tan (c+d x))}{d} \]

output
-5/16*a*arctanh(cos(d*x+c))/d-3/2*b*cot(d*x+c)^2/d-3/4*b*cot(d*x+c)^4/d-1/ 
6*b*cot(d*x+c)^6/d-5/16*a*cot(d*x+c)*csc(d*x+c)/d-5/24*a*cot(d*x+c)*csc(d* 
x+c)^3/d-1/6*a*cot(d*x+c)*csc(d*x+c)^5/d+b*ln(tan(d*x+c))/d
 
3.2.67.2 Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.66 \[ \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx=-\frac {5 a \csc ^2\left (\frac {1}{2} (c+d x)\right )}{64 d}-\frac {a \csc ^4\left (\frac {1}{2} (c+d x)\right )}{64 d}-\frac {a \csc ^6\left (\frac {1}{2} (c+d x)\right )}{384 d}-\frac {b \csc ^2(c+d x)}{2 d}-\frac {b \csc ^4(c+d x)}{4 d}-\frac {b \csc ^6(c+d x)}{6 d}-\frac {5 a \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{16 d}-\frac {b \log (\cos (c+d x))}{d}+\frac {5 a \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{16 d}+\frac {b \log (\sin (c+d x))}{d}+\frac {5 a \sec ^2\left (\frac {1}{2} (c+d x)\right )}{64 d}+\frac {a \sec ^4\left (\frac {1}{2} (c+d x)\right )}{64 d}+\frac {a \sec ^6\left (\frac {1}{2} (c+d x)\right )}{384 d} \]

input
Integrate[Csc[c + d*x]^7*(a + b*Sec[c + d*x]),x]
 
output
(-5*a*Csc[(c + d*x)/2]^2)/(64*d) - (a*Csc[(c + d*x)/2]^4)/(64*d) - (a*Csc[ 
(c + d*x)/2]^6)/(384*d) - (b*Csc[c + d*x]^2)/(2*d) - (b*Csc[c + d*x]^4)/(4 
*d) - (b*Csc[c + d*x]^6)/(6*d) - (5*a*Log[Cos[(c + d*x)/2]])/(16*d) - (b*L 
og[Cos[c + d*x]])/d + (5*a*Log[Sin[(c + d*x)/2]])/(16*d) + (b*Log[Sin[c + 
d*x]])/d + (5*a*Sec[(c + d*x)/2]^2)/(64*d) + (a*Sec[(c + d*x)/2]^4)/(64*d) 
 + (a*Sec[(c + d*x)/2]^6)/(384*d)
 
3.2.67.3 Rubi [A] (warning: unable to verify)

Time = 0.77 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.99, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.053, Rules used = {3042, 4360, 25, 25, 3042, 25, 3313, 25, 3042, 3100, 243, 49, 2009, 4255, 3042, 4255, 3042, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a-b \csc \left (c+d x-\frac {\pi }{2}\right )}{\cos \left (c+d x-\frac {\pi }{2}\right )^7}dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int -\left (\csc ^7(c+d x) \sec (c+d x) (-a \cos (c+d x)-b)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\left ((b+a \cos (c+d x)) \csc ^7(c+d x) \sec (c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \csc ^7(c+d x) \sec (c+d x) (a \cos (c+d x)+b)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {b-a \sin \left (c+d x-\frac {\pi }{2}\right )}{\sin \left (c+d x-\frac {\pi }{2}\right ) \cos \left (c+d x-\frac {\pi }{2}\right )^7}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {b-a \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )}{\cos \left (\frac {1}{2} (2 c-\pi )+d x\right )^7 \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )}dx\)

\(\Big \downarrow \) 3313

\(\displaystyle a \int \csc ^7(c+d x)dx-b \int -\csc ^7(c+d x) \sec (c+d x)dx\)

\(\Big \downarrow \) 25

\(\displaystyle a \int \csc ^7(c+d x)dx+b \int \csc ^7(c+d x) \sec (c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \csc (c+d x)^7dx+b \int \csc (c+d x)^7 \sec (c+d x)dx\)

\(\Big \downarrow \) 3100

\(\displaystyle a \int \csc (c+d x)^7dx+\frac {b \int \cot ^7(c+d x) \left (\tan ^2(c+d x)+1\right )^3d\tan (c+d x)}{d}\)

\(\Big \downarrow \) 243

\(\displaystyle a \int \csc (c+d x)^7dx+\frac {b \int \cot ^4(c+d x) \left (\tan ^2(c+d x)+1\right )^3d\tan ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 49

\(\displaystyle a \int \csc (c+d x)^7dx+\frac {b \int \left (\cot ^4(c+d x)+3 \cot ^3(c+d x)+3 \cot ^2(c+d x)+\cot (c+d x)\right )d\tan ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \csc (c+d x)^7dx+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle a \left (\frac {5}{6} \int \csc ^5(c+d x)dx-\frac {\cot (c+d x) \csc ^5(c+d x)}{6 d}\right )+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {5}{6} \int \csc (c+d x)^5dx-\frac {\cot (c+d x) \csc ^5(c+d x)}{6 d}\right )+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \int \csc ^3(c+d x)dx-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}\right )-\frac {\cot (c+d x) \csc ^5(c+d x)}{6 d}\right )+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \int \csc (c+d x)^3dx-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}\right )-\frac {\cot (c+d x) \csc ^5(c+d x)}{6 d}\right )+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \csc (c+d x)dx-\frac {\cot (c+d x) \csc (c+d x)}{2 d}\right )-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}\right )-\frac {\cot (c+d x) \csc ^5(c+d x)}{6 d}\right )+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \csc (c+d x)dx-\frac {\cot (c+d x) \csc (c+d x)}{2 d}\right )-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}\right )-\frac {\cot (c+d x) \csc ^5(c+d x)}{6 d}\right )+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle a \left (\frac {5}{6} \left (\frac {3}{4} \left (-\frac {\text {arctanh}(\cos (c+d x))}{2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 d}\right )-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}\right )-\frac {\cot (c+d x) \csc ^5(c+d x)}{6 d}\right )+\frac {b \left (-\frac {1}{3} \cot ^3(c+d x)-\frac {3}{2} \cot ^2(c+d x)-3 \cot (c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

input
Int[Csc[c + d*x]^7*(a + b*Sec[c + d*x]),x]
 
output
a*(-1/6*(Cot[c + d*x]*Csc[c + d*x]^5)/d + (5*(-1/4*(Cot[c + d*x]*Csc[c + d 
*x]^3)/d + (3*(-1/2*ArcTanh[Cos[c + d*x]]/d - (Cot[c + d*x]*Csc[c + d*x])/ 
(2*d)))/4))/6) + (b*(-3*Cot[c + d*x] - (3*Cot[c + d*x]^2)/2 - Cot[c + d*x] 
^3/3 + Log[Tan[c + d*x]^2]))/(2*d)
 

3.2.67.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 49
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] 
&& IGtQ[m, 0] && IGtQ[m + n + 2, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3100
Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] 
:> Simp[1/f   Subst[Int[(1 + x^2)^((m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]] 
, x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2]
 

rule 3313
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_ 
) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[Cos[e + f*x]^ 
p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[Cos[e + f*x]^p*(d*Sin[e + f*x 
])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2 
] && IntegerQ[n] && ((LtQ[p, 0] && NeQ[a^2 - b^2, 0]) || LtQ[0, n, p - 1] | 
| LtQ[p + 1, -n, 2*p + 1])
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.2.67.4 Maple [A] (verified)

Time = 1.24 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.74

method result size
derivativedivides \(\frac {a \left (\left (-\frac {\csc \left (d x +c \right )^{5}}{6}-\frac {5 \csc \left (d x +c \right )^{3}}{24}-\frac {5 \csc \left (d x +c \right )}{16}\right ) \cot \left (d x +c \right )+\frac {5 \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{16}\right )+b \left (-\frac {1}{6 \sin \left (d x +c \right )^{6}}-\frac {1}{4 \sin \left (d x +c \right )^{4}}-\frac {1}{2 \sin \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )}{d}\) \(103\)
default \(\frac {a \left (\left (-\frac {\csc \left (d x +c \right )^{5}}{6}-\frac {5 \csc \left (d x +c \right )^{3}}{24}-\frac {5 \csc \left (d x +c \right )}{16}\right ) \cot \left (d x +c \right )+\frac {5 \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{16}\right )+b \left (-\frac {1}{6 \sin \left (d x +c \right )^{6}}-\frac {1}{4 \sin \left (d x +c \right )^{4}}-\frac {1}{2 \sin \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )}{d}\) \(103\)
parallelrisch \(\frac {-384 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-384 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (120 a +384 b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-a -b \right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (-9 a -12 b \right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-45 a -87 b \right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \left (a -b \right )+\left (9 a -12 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+45 a -87 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{384 d}\) \(167\)
norman \(\frac {-\frac {a +b}{384 d}+\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{384 d}+\frac {\left (3 a -4 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{128 d}-\frac {\left (3 a +4 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{128 d}+\frac {\left (15 a -29 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{128 d}-\frac {\left (15 a +29 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{128 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}-\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}-\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}+\frac {\left (5 a +16 b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 d}\) \(194\)
risch \(\frac {15 a \,{\mathrm e}^{11 i \left (d x +c \right )}+48 b \,{\mathrm e}^{10 i \left (d x +c \right )}-85 a \,{\mathrm e}^{9 i \left (d x +c \right )}-288 b \,{\mathrm e}^{8 i \left (d x +c \right )}+198 a \,{\mathrm e}^{7 i \left (d x +c \right )}+736 b \,{\mathrm e}^{6 i \left (d x +c \right )}+198 a \,{\mathrm e}^{5 i \left (d x +c \right )}-288 b \,{\mathrm e}^{4 i \left (d x +c \right )}-85 a \,{\mathrm e}^{3 i \left (d x +c \right )}+48 b \,{\mathrm e}^{2 i \left (d x +c \right )}+15 \,{\mathrm e}^{i \left (d x +c \right )} a}{24 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{6}}-\frac {5 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{16 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right ) b}{d}+\frac {5 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{16 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right ) b}{d}-\frac {b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{d}\) \(241\)

input
int(csc(d*x+c)^7*(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(a*((-1/6*csc(d*x+c)^5-5/24*csc(d*x+c)^3-5/16*csc(d*x+c))*cot(d*x+c)+5 
/16*ln(-cot(d*x+c)+csc(d*x+c)))+b*(-1/6/sin(d*x+c)^6-1/4/sin(d*x+c)^4-1/2/ 
sin(d*x+c)^2+ln(tan(d*x+c))))
 
3.2.67.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 284 vs. \(2 (126) = 252\).

Time = 0.27 (sec) , antiderivative size = 284, normalized size of antiderivative = 2.03 \[ \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx=\frac {30 \, a \cos \left (d x + c\right )^{5} + 48 \, b \cos \left (d x + c\right )^{4} - 80 \, a \cos \left (d x + c\right )^{3} - 120 \, b \cos \left (d x + c\right )^{2} + 66 \, a \cos \left (d x + c\right ) - 96 \, {\left (b \cos \left (d x + c\right )^{6} - 3 \, b \cos \left (d x + c\right )^{4} + 3 \, b \cos \left (d x + c\right )^{2} - b\right )} \log \left (-\cos \left (d x + c\right )\right ) - 3 \, {\left ({\left (5 \, a - 16 \, b\right )} \cos \left (d x + c\right )^{6} - 3 \, {\left (5 \, a - 16 \, b\right )} \cos \left (d x + c\right )^{4} + 3 \, {\left (5 \, a - 16 \, b\right )} \cos \left (d x + c\right )^{2} - 5 \, a + 16 \, b\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 3 \, {\left ({\left (5 \, a + 16 \, b\right )} \cos \left (d x + c\right )^{6} - 3 \, {\left (5 \, a + 16 \, b\right )} \cos \left (d x + c\right )^{4} + 3 \, {\left (5 \, a + 16 \, b\right )} \cos \left (d x + c\right )^{2} - 5 \, a - 16 \, b\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 88 \, b}{96 \, {\left (d \cos \left (d x + c\right )^{6} - 3 \, d \cos \left (d x + c\right )^{4} + 3 \, d \cos \left (d x + c\right )^{2} - d\right )}} \]

input
integrate(csc(d*x+c)^7*(a+b*sec(d*x+c)),x, algorithm="fricas")
 
output
1/96*(30*a*cos(d*x + c)^5 + 48*b*cos(d*x + c)^4 - 80*a*cos(d*x + c)^3 - 12 
0*b*cos(d*x + c)^2 + 66*a*cos(d*x + c) - 96*(b*cos(d*x + c)^6 - 3*b*cos(d* 
x + c)^4 + 3*b*cos(d*x + c)^2 - b)*log(-cos(d*x + c)) - 3*((5*a - 16*b)*co 
s(d*x + c)^6 - 3*(5*a - 16*b)*cos(d*x + c)^4 + 3*(5*a - 16*b)*cos(d*x + c) 
^2 - 5*a + 16*b)*log(1/2*cos(d*x + c) + 1/2) + 3*((5*a + 16*b)*cos(d*x + c 
)^6 - 3*(5*a + 16*b)*cos(d*x + c)^4 + 3*(5*a + 16*b)*cos(d*x + c)^2 - 5*a 
- 16*b)*log(-1/2*cos(d*x + c) + 1/2) + 88*b)/(d*cos(d*x + c)^6 - 3*d*cos(d 
*x + c)^4 + 3*d*cos(d*x + c)^2 - d)
 
3.2.67.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx=\text {Timed out} \]

input
integrate(csc(d*x+c)**7*(a+b*sec(d*x+c)),x)
 
output
Timed out
 
3.2.67.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.02 \[ \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx=-\frac {3 \, {\left (5 \, a - 16 \, b\right )} \log \left (\cos \left (d x + c\right ) + 1\right ) - 3 \, {\left (5 \, a + 16 \, b\right )} \log \left (\cos \left (d x + c\right ) - 1\right ) + 96 \, b \log \left (\cos \left (d x + c\right )\right ) - \frac {2 \, {\left (15 \, a \cos \left (d x + c\right )^{5} + 24 \, b \cos \left (d x + c\right )^{4} - 40 \, a \cos \left (d x + c\right )^{3} - 60 \, b \cos \left (d x + c\right )^{2} + 33 \, a \cos \left (d x + c\right ) + 44 \, b\right )}}{\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1}}{96 \, d} \]

input
integrate(csc(d*x+c)^7*(a+b*sec(d*x+c)),x, algorithm="maxima")
 
output
-1/96*(3*(5*a - 16*b)*log(cos(d*x + c) + 1) - 3*(5*a + 16*b)*log(cos(d*x + 
 c) - 1) + 96*b*log(cos(d*x + c)) - 2*(15*a*cos(d*x + c)^5 + 24*b*cos(d*x 
+ c)^4 - 40*a*cos(d*x + c)^3 - 60*b*cos(d*x + c)^2 + 33*a*cos(d*x + c) + 4 
4*b)/(cos(d*x + c)^6 - 3*cos(d*x + c)^4 + 3*cos(d*x + c)^2 - 1))/d
 
3.2.67.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 357 vs. \(2 (126) = 252\).

Time = 0.31 (sec) , antiderivative size = 357, normalized size of antiderivative = 2.55 \[ \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx=\frac {12 \, {\left (5 \, a + 16 \, b\right )} \log \left (\frac {{\left | -\cos \left (d x + c\right ) + 1 \right |}}{{\left | \cos \left (d x + c\right ) + 1 \right |}}\right ) - 384 \, b \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1 \right |}\right ) + \frac {{\left (a + b - \frac {9 \, a {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {12 \, b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {45 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {87 \, b {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {110 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {352 \, b {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) - 1\right )}^{3}} - \frac {45 \, a {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {87 \, b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {9 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {12 \, b {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {a {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {b {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{384 \, d} \]

input
integrate(csc(d*x+c)^7*(a+b*sec(d*x+c)),x, algorithm="giac")
 
output
1/384*(12*(5*a + 16*b)*log(abs(-cos(d*x + c) + 1)/abs(cos(d*x + c) + 1)) - 
 384*b*log(abs(-(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 1)) + (a + b - 9*a 
*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 12*b*(cos(d*x + c) - 1)/(cos(d*x 
+ c) + 1) + 45*a*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 87*b*(cos(d*x 
 + c) - 1)^2/(cos(d*x + c) + 1)^2 - 110*a*(cos(d*x + c) - 1)^3/(cos(d*x + 
c) + 1)^3 - 352*b*(cos(d*x + c) - 1)^3/(cos(d*x + c) + 1)^3)*(cos(d*x + c) 
 + 1)^3/(cos(d*x + c) - 1)^3 - 45*a*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) 
+ 87*b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 9*a*(cos(d*x + c) - 1)^2/(c 
os(d*x + c) + 1)^2 - 12*b*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - a*(c 
os(d*x + c) - 1)^3/(cos(d*x + c) + 1)^3 + b*(cos(d*x + c) - 1)^3/(cos(d*x 
+ c) + 1)^3)/d
 
3.2.67.9 Mupad [B] (verification not implemented)

Time = 13.47 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.06 \[ \int \csc ^7(c+d x) (a+b \sec (c+d x)) \, dx=\frac {\frac {5\,a\,{\cos \left (c+d\,x\right )}^5}{16}+\frac {b\,{\cos \left (c+d\,x\right )}^4}{2}-\frac {5\,a\,{\cos \left (c+d\,x\right )}^3}{6}-\frac {5\,b\,{\cos \left (c+d\,x\right )}^2}{4}+\frac {11\,a\,\cos \left (c+d\,x\right )}{16}+\frac {11\,b}{12}}{d\,\left ({\cos \left (c+d\,x\right )}^6-3\,{\cos \left (c+d\,x\right )}^4+3\,{\cos \left (c+d\,x\right )}^2-1\right )}+\frac {\ln \left (\cos \left (c+d\,x\right )-1\right )\,\left (\frac {5\,a}{32}+\frac {b}{2}\right )}{d}-\frac {\ln \left (\cos \left (c+d\,x\right )+1\right )\,\left (\frac {5\,a}{32}-\frac {b}{2}\right )}{d}-\frac {b\,\ln \left (\cos \left (c+d\,x\right )\right )}{d} \]

input
int((a + b/cos(c + d*x))/sin(c + d*x)^7,x)
 
output
((11*b)/12 + (11*a*cos(c + d*x))/16 - (5*a*cos(c + d*x)^3)/6 + (5*a*cos(c 
+ d*x)^5)/16 - (5*b*cos(c + d*x)^2)/4 + (b*cos(c + d*x)^4)/2)/(d*(3*cos(c 
+ d*x)^2 - 3*cos(c + d*x)^4 + cos(c + d*x)^6 - 1)) + (log(cos(c + d*x) - 1 
)*((5*a)/32 + b/2))/d - (log(cos(c + d*x) + 1)*((5*a)/32 - b/2))/d - (b*lo 
g(cos(c + d*x)))/d